The flow past an obstacle is a fundamental object in fluid mechanics. In 1967 Finn and Smith proved the unique existence of stationary solutions, called the physically reasonable solutions, to the Navier–Stokes equations in a two-dimensional exterior domain modeling this type of flows when the Reynolds number is sufficiently small. The asymptotic behavior of their solution at spatial infinity has been studied in detail and well understood by now, while its stability has remained open due to the difficulty specific to the two-dimensionality. In this paper, we prove that the physically reasonable solutions constructed by Finn and Smith are asymptotically stable with respect to small and well-localized initial perturbations.