We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a study of the word problem for groups, R. J. Thompson considered a certain group $F$ of self-homeomorphisms of the Cantor set and showed, among other things, that $F$ is finitely presented. Using results of K. S. Brown and R. Geoghegan, M. N. Dyer showed that $F$ is the fundamental group of a finite two-complex
${{Z}^{2}}$
having Euler characteristic one and which is Cockcroft, in the sense that each map of the two-sphere into
${{Z}^{2}}$
is homologically trivial. We show that no proper covering complex of
${{Z}^{2}}$
is Cockcroft. A general result on Cockcroft properties implies that no proper regular covering complex of any finite two-complex with fundamental group $F$ is Cockcroft.
We show that diagrammatically reducible two-complexes are characterized by the property: every finity subconmplex of the universal cover collapses to a one-complex. We use this to show that a compact orientable three-manifold with nonempty boundary is Haken if and only if it has a diagrammatically reducible spine. We also formulate an nanlogue of diagrammatic reducibility for higher dimensional complexes. Like Haken three-manifolds, we observe that if n ≥ 4 and M is compact connected n-dimensional manifold with a traingulation, or a spine, satisfying this property, then the interior of the universal cover of M is homeomorphic to Euclidean n-space.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.