We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 6 analyses the ecological mechanisms, and implications, of intraspecific trait variability (ITV) and some key approaches to take ITV properly into account in modern trait-based analyses. The different sources of ITV, genetic variation, epigenetic effects and phenotypic plasticity, are discussed and put in the context of species evolution, adaptation to environmental conditions, species distribution potential (including invasive species) and the effects of species on multiple ecosystem properties and trophic interactions. Different tools are provided to quantify how strong ITV affect ecological patterns. A comparison of within- vs between-species trait variability in a community is discussed. Tools showing how strong the effect of changes in species composition (turnover) compared to ITV along environmental gradients are provided. Finally, methods considering ITV to quantify trait differences between species, via trait overlap in trait probability distributions, are discussed in the light of modern tools measuring functional diversity across different scales
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.