The relationship between endosperm cap weakening and endo-β-mannanase activity during priming and the time to germination after priming was studied in tomato (Lycopersicon esculentum) seeds. During priming of seeds in −0.4 MPa PEG, the mechanical restraint of the endosperm cap decreased while the endo-β-mannanase activity in the endosperm cap increased. There was no decrease in required puncture force and no increase in endo-β-mannanase activity in seeds during priming in −1.0 MPa PEG. Two classes of seeds could be distinguished during priming in −0.7 MPa PEG: one with decreased required puncture force and one without. A strong correlation was found between the lowering of the mechanical restraint and endo-β-mannanase activity. It was concluded that individual seeds have to cross a threshold water potential in order to develop enzyme activity and lower their mechanical restraint. A decrease in required puncture force and increase in endo-β-mannanase activity correlated with ice crystal-induced porosity in the endosperm cap cell walls in scanning micrographs. It was presumed that ice crystal-induced porosity reflects cell-wall hydrolysis. Germination time after priming correlated positively with required puncture force during priming, depending on the osmotic potential. Seeds in −1.0 MPa PEG improved their time to germination, without a decrease in the required puncture force. Therefore it was concluded that lowering of the endosperm restraint during priming positively affects the time to germination of primed seeds but is not a prerequisite for rapid germination.