We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the rapid development of unmanned aerial vehicle (UAV), extensive attentions have been paid to UAV-aided data collection in wireless sensor networks. However, it is very challenging to maintain the information freshness of the sensor nodes (SNs) subject to the UAV’s limited energy capacity and/or the large network scale. This chapter introduces two modes of data collection: single and continuous data collection with the aid of UAV, respectively. In the former case, the UAVs are dispatched to gather sensing data from each SN just once according to a preplanned data collection strategy. To keep information fresh, a multistage approach is proposed to find a set of data collection points at which the UAVs hover to collect and the age-optimal flight trajectory of each UAV. In the later case, the UAVs perform data collection continuously and make real-time decisions on the uploading SN and flight direction at each step. A deep reinforcement learning (DRL) framework incorporating the deep Q-network (DQN) algorithm is proposed to find the age-optimal data collection solution subject to the maximum flight velocity and energy capacity of each UAV. Numerical results are presented to show the effectiveness of the proposed methods in different scenarios.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.