In various fields, such as teletraffic and economics, measured time series have been reported to adhere to multifractal scaling. Classical cascading measures possess multifractal scaling, but their increments form a nonstationary process. To overcome this problem, we introduce a construction of random multifractal measures based on iterative multiplication of stationary stochastic processes, a special form of T-martingales. We study the ℒ2-convergence, nondegeneracy, and continuity of the limit process. Establishing a power law for its moments, we obtain a formula for the multifractal spectrum and hint at how to prove the full formalism.