This work is devoted to asymptotic properties of singularly perturbed Markov chains in discrete time. The motivation stems from applications in discrete-time control and optimization problems, manufacturing and production planning, stochastic networks, and communication systems, in which finite-state Markov chains are used to model large-scale and complex systems. To reduce the complexity of the underlying system, the states in each recurrent class are aggregated into a single state. Although the aggregated process may not be Markovian, its continuous-time interpolation converges to a continuous-time Markov chain whose generator is a function determined by the invariant measures of the recurrent states. Sequences of occupation measures are defined. A mean square estimate on a sequence of unscaled occupation measures is obtained. Furthermore, it is proved that a suitably scaled sequence of occupation measures converges to a switching diffusion.