Many mathematical models involve input parameters, which are not precisely known. Globalsensitivity analysis aims to identify the parameters whose uncertainty has the largestimpact on the variability of a quantity of interest (output of the model). One of thestatistical tools used to quantify the influence of each input variable on the output isthe Sobol sensitivity index. We consider the statistical estimation of this index from afinite sample of model outputs: we present two estimators and state a central limittheorem for each. We show that one of these estimators has an optimal asymptotic variance.We also generalize our results to the case where the true output is not observable, and isreplaced by a noisy version.