Five classes of herbicides (carbamothioates, chloroacetamides, substituted pyridazinones, cyclohexanediones, and aryloxyphenoxypropionic acids) have been reported to inhibit lipid biosynthesis in higher plants. Carbamothioates impair the synthesis of surface lipids (waxes, cutin, suberin). These effects have been attributed to the ability of this herbicide class to inhibit one or more acyl-CoA elongases. Though as yet poorly characterized, these enzymes are associated with the endoplasmic reticulum and catalyze the condensation of malonyl-CoA with fatty acid acyl-CoA substrates to form very long-chain fatty acids used in the synthesis of surface lipids. There is contradictory evidence regarding the effects of chloroacetamide herbicides on de novo fatty acid biosynthesis. Selected substituted pyridazinones decrease the degree of unsaturation of plastidic galactolipids. This effect is attributed to the ability of selected members of this herbicide class to inhibit fatty acid desaturases which are thought to be located in the chloroplast envelope. Aryloxyphenoxypropionic acid and cyclohexanedione herbicides inhibit de novo fatty acid biosynthesis in grasses. The target site for these herbicide classes is the enzyme acetyl-CoA carboxylase which is found in the stroma of plastids. In most cases, selectivity between grasses and dicots is expressed at this site. Aryloxyphenoxypropionic acids and cyclohexanediones are reversible, linear, noncompetitive inhibitors of acetyl-CoA carboxylase from grasses. Both classes are also mutually exclusive inhibitors of grass acetyl-CoA carboxylase which suggests that they bind at a common domain on the enzyme.