In this paper we study the existence and nonexistence of multiple positive solutions for the Dirichlet problem:
$$ -\Delta{u}-\mu\frac{u}{|x|^2}=\lambda(1+u)^p,\quad u\gt0,\quad u\in H^1_0(\varOmega), \tag{*} $$
where $0\leq\mu\lt(\frac{1}{2}(N-2))^2$, $\lambda\gt0$, $1\ltp\leq(N+2)/(N-2)$, $N\geq3$. Using the sub–supersolution method and the variational approach, we prove that there exists a positive number $\lambda^*$ such that problem (*) possesses at least two positive solutions if $\lambda\in(0,\lambda^*)$, a unique positive solution if $\lambda=\lambda^*$, and no positive solution if $\lambda\in(\lambda^*,\infty)$.