In this work, a low profile ultra-wideband (UWB) antenna is designed and investigated using a novel loop-based wideband artificial magnetic conductor (WB-AMC) for gain enhancement. Initially, a compact loop antenna is designed using stub loading and further optimized for the UWB range by applying curve ground methodology. The average gain of the proposed antenna without WB-AMC is 2.7 dBi. To enhance the gain of the entire UWB range, loop-based WB-AMC in [2 × 2] forms is integrated. WB-AMC is used as a ground plane beneath the antenna. To validate the performance, the UWB antenna and WB-AMC are fabricated and tested. The measured results confirm the entire UWB range. Proposed antenna provides a peak gain of 9.4 dBi and an average gain of 5.8 dBi. Vertical profile reduction of 50% is achieved compared to perfect electric conductor ground. The proposed UWB antenna is a potential candidate for UWB wireless applications due to its attractive features such as low profile, wide bandwidth coverage, omnidirectional pattern, constant high gain, and group delay.