Throughout their lives massive stars modify their environment through their ionizing photons and strong stellar winds. Here, I present coupled radiation-hydrodynamic calculations of the evolution of the bubbles and nebulae surrounding massive stars. The evolution is followed from the main sequence through the Wolf-Rayet stage and shows that structures are formed in the ISM out to some tens of parsecs radius. Closer to the star, instabilities lead to the breakup of swept-up wind shells. The photoevaporated flows from the resulting clumps interact with the stellar wind from the central star, which leads to the production of soft X-rays. I examine the consequences for the different observable structures at all time and size scales and evaluate the impact that the massive star has on its environment.