A major uncertainty in the determination of the mass profile of the Milky Way using stellar kinematics in the halo is the poorly determined anisotropy parameter, , where σr is the Galactocentric radial velocity dispersion, and σθ and σφ are the tangential components of the velocity dispersion. We have used a sample of over 24,000 Galactic halo K giant and blue horizontal branch stars from the LAMOST stellar spectroscopic survey and SDSS/SEGUE, combined with proper motions from Gaia Data Release 2, to measure β(rgc) over a wide range of Galactocentric distances rgc from 5 to 80 kpc. Kinematic substructures have been carefully removed to reveal the underlying diffuse stellar halo prior to measuring β. We find that orbits are generally radial (β > 0) and β is constant out to distances of about 40 kpc, with a dependence on metallicity of the stars, such that β declines with lower metallicity. Similar behavior is seen in both the K giant and BHB samples.