Until recently, three-dimensional reconstruction on an ultrastructural level was only possible using serial section transmission electron microscopy (ssTEM). However, ssTEM is highly challenging and prone to artifacts as, e.g., section loss and image distortions. New methods, such as serial block-face scanning electron microscopy (SBFSEM) overcome these limitations and promise a high lateral resolution. However, little is known about the usability of SBFSEM in diminutive, but highly complex cellular systems. We used spider sperm (~3 µm in diameter), which fulfills these conditions, to analyze the potential of SBFSEM compared with ssTEM. Our data suggest that the resolution obtained by SBFSEM allows depicting structures on a cellular level and is sufficient to discriminate subcellular components, but is highly dependent on previous staining procedures and electron density of the target structures.