Rating scales as predictors in regression models are typically treated as metrically scaled variables or, alternatively, are coded in dummy variables. The first approach implies a scale level that is not justified, the latter approach results in a large number of parameters to be estimated. Therefore, when rating scales are dummy-coded, applications are often restricted to the use of a few predictors. The penalization approach advocated here takes the scale level serious by using only the ordering of categories but is shown to work in the high dimensional case. We consider the proper modeling of rating scales as predictors and selection procedures by using penalization methods that are tailored to ordinal predictors. In addition to the selection of predictors, the clustering of categories is investigated. Existing methodology is extended to the wider class of generalized linear models. Moreover, higher order differences that allow shrinkage towards a polynomial as well as monotonicity constraints and alternative penalties are introduced. The proposed penalization approaches are illustrated by use of the Motivational States Questionnaire.