We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to investigate tolerance dose to organs at risk (OARs) as well as degree of conformity and homogeneity for head and neck cancer patients by using simultaneous integrated boost intensity-modulated radiotherapy technique (SIB IMRT).
Materials and methods
This study analysed 15 head and neck cancer patients receiving treatment using inverse planned SIB IMRT technique. Using a beam energy of 6 MV, two dose levels of 70 and 55·4 Gy were used to treat the tumour. Doses of 2 Gy in 35 fractions and 1·68 Gy in 33 fractions were simultaneously delivered for effective planning target volume (PTV1) and boost planning target volume (PTV2), respectively.
Results
Dose distribution in PTV and critical organs lies within tolerance dose guidelines protecting spinal cord, brain stem, optic chiasm, optic nerve, thus reducing the risk of damage to normal tissues. Minor deviation from tolerance limit was observed for parotid glands. This technique provided highly conformal and homogenous dose distribution as well as better sparing of OARs, hence verifying quality assurance results to be satisfactory.
Findings
SIB IMRT technique offers best solution for preserving organ function by keeping dose below tolerance level. Treatment of head and neck carcinoma using SIB IMRT is feasible, more efficient, and dose escalation is achieved in a single plan.
The aim of this study was to compare the dosimetric parameters and effects of simultaneous integrated boost (SIB) and traditional sequential electron boost, after helical tomotherapy, because of the lack of studies in this field in the current literature.
Methods
Computed tomographic data of 14 patients who received SIB in 2012–2015 were collected from Hong Kong Sanatorium & Hospital. New tomotherapy with SIB plans and tomotherapy with sequential boost plans were generated for each patient, and results were compared.
Results
Conformation number, mean dose, dose received by 95% volume (both sides), ipsilateral lung volume receiving 20 Gy (V20) and skin dose (right side) were found to be significantly better for SIB (p<0·05), however coverage index and gross target volume dose showed no significant difference, and heart dose was significantly higher for SIB on the right side.
Conclusion
Tomotherapy with SIB may be able to offer less organ at risk dose (except for the heart), while maintaining the ability to deliver adequate dose coverage.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.