We study efficient spectral-collocation and continuation methods (SCCM) for rotating two-component Bose-Einstein condensates (BECs) and rotating two-component BECs in optical lattices, where the second kind Chebyshev polynomials are used as the basis functions for the trial function space. A novel two-parameter continuation algorithm is proposed for computing the ground state and first excited state solutions of the governing Gross-Pitaevskii equations (GPEs), where the classical tangent vector is split into two constraint conditions for the bordered linear systems. Numerical results on rotating two-component BECs and rotating two-component BECs in optical lattices are reported. The results on the former are consistent with the published numerical results.