Geomagnetic data gathering by micro-rovers is gaining momentum both for future planetary exploration missions and for terrestrial applications in extreme environments. This paper presents research into the integration of a planetary micro-rover with a potassium total-field magnetometer. The 40 kg Kapvik micro-rover is an ideal platform due to an aluminium construction and a rocker-bogie mobility system, which provides good manoeuvrability and terrainability. A light-weight GSMP 35U (uninhabited aerial vehicle) magnetometer, comprised of a 0.65 kg sensor and 0.63 kg electronics module, was mounted to the chassis via a custom 1.21 m composite boom. The boom dimensions were optimized to be an effective compromise between noise mitigation and mechanical practicality. An analysis using the fourth difference method was performed estimating the magnetic noise envelope at ±0.03 nT at 10 Hz sampling frequency from the integrated systems during robotic operations. A robotic magnetic survey captured the total magnetic intensity along three parallel 40 m long lines and a perpendicular 15 m long tie line over the course of 3.75 h. The total magnetic intensity data were corrected for diurnal variations, levelled by linear interpolation of tie-line intersection points, corrected for a regional gradient, and then interpolated using Delaunay triangulation to lead a residual magnetic intensity map. This map exhibited an anomalous linear feature corresponding to a magnetic dipole 650 nT in amplitude. This feature coincides with a storm sewer buried approximately 2 m in the subsurface. This work provides benchmark methodologies and data to guide future integration of magnetometers on board planetary micro-rovers.