We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Prior evidence indicates that negative symptom severity and cognitive deficits, in people with schizophrenia (PSZ), relate to measures of reward-seeking and loss-avoidance behavior (implicating the ventral striatum/VS), as well as uncertainty-driven exploration (reliant on rostrolateral prefrontal cortex/rlPFC). While neural correlates of reward-seeking and loss-avoidance have been examined in PSZ, neural correlates of uncertainty-driven exploration have not. Understanding neural correlates of uncertainty-driven exploration is an important next step that could reveal insights to how this mechanism of cognitive and negative symptoms manifest at a neural level.
Methods
We acquired fMRI data from 29 PSZ and 36 controls performing the Temporal Utility Integration decision-making task. Computational analyses estimated parameters corresponding to learning rates for both positive and negative reward prediction errors (RPEs) and the degree to which participates relied on representations of relative uncertainty. Trial-wise estimates of expected value, certainty, and RPEs were generated to model fMRI data.
Results
Behaviorally, PSZ demonstrated reduced reward-seeking behavior compared to controls, and negative symptoms were positively correlated with loss-avoidance behavior. This finding of a bias toward loss avoidance learning in PSZ is consistent with previous work. Surprisingly, neither behavioral measures of exploration nor neural correlates of uncertainty in the rlPFC differed significantly between groups. However, we showed that trial-wise estimates of relative uncertainty in the rlPFC distinguished participants who engaged in exploratory behavior from those who did not. rlPFC activation was positively associated with intellectual function.
Conclusions
These results further elucidate the nature of reinforcement learning and decision-making in PSZ and healthy volunteers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.