We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The reward system regulates the processes that motivate people to pursue evolutionary beneficial stimuli. Effective functioning of the reward system can protect against the development of anhedonia. In the daily life, the reward system can be expressed as the dynamic interplay of positive affect (liking), reward anticipation (wanting), and active behavior (engaging). Applying network analysis to daily life experience data allows us to identify such reward dynamics and use them to predict future depressive symptoms.
Objectives
We investigated whether at baseline (i) higher network positive affect in-strength, reflecting how strongly positive affect is influenced by other components and hence the level of anhedonia, and (ii) higher network connectivity, reflecting overall functioning of the reward system, are associated with fewer depressive symptoms on follow-up.
Methods
We used data from 43 participants with mild depressive symptoms from the SMARTSCAN study. The dynamic interplay between momentary positive affect, reward anticipation, and active behavior was assessed with individual vector-autoregressive models and the network analysis. Network positive affect in-strength and connectivity indices were used to predict a six-month depressive symptoms trajectory.
Results
Reward systems networks vary greatly between individuals. On the group level, higher positive affect in-strength (Beta=-3.66, p=0.05) and network connectivity (Beta=-4.06, p=0.03) at baseline were associated with fewer symptoms at follow-up.
Conclusions
Higher influences of reward anticipation and active behavior on positive affect and stronger connections between reward cycle components are associated with fewer future symptoms, suggesting the importance of daily life reward cycle dynamics in depression.
Disclosure
No significant relationships.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.