New transference results for Fourier multiplier operators defined by regulated symbols are presented. We prove restriction and extension of multipliers between weighted Lebesgue spaces with two different weights, which belong to a class more general than periodic weights, and two different exponents of integrability that can be below one.
We also develop some ad-hoc methods that apply to weights defined by the product of periodic weights with functions of power type. Our vector-valued approach allows us to extend our results to transference of maximal multipliers and provide transference of Littlewood–Paley inequalities.