We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we construct a natural probability measure on the space of real branched coverings from a real projective algebraic curve
$(X,c_X)$
to the projective line
$(\mathbb{C} \mathbb {P}^1,\textit{conj} )$
. We prove that the space of degree d real branched coverings having “many” real branched points (for example, more than
$\sqrt {d}^{1+\alpha }$
, for any
$\alpha>0$
) has exponentially small measure. In particular, maximal real branched coverings – that is, real branched coverings such that all the branched points are real – are exponentially rare.
We prove that the determination of all $M^*$-groups is essentially equivalent to the determination of finite groups generated by an element of order 3 and an element of order 2 or 3 that admit a particular automorphism. We also show how the second commutator subgroup of an $M^*$-group $G$ can often be used to construct $M^*$-groups which are direct products with $G$ as one factor. Several applications of both methods are given.
The quotient of a real analytic manifold by a properly discontinuous group action is, in general, only a semianalytic variety. We study the boundary of such a quotient, i.e., the set of points at which the quotient is not analytic. We apply the results to the moduli space M$_g/R$ of nonsingular real algebraic curves of genus g (g[les ]2). This moduli space has a natural structure of a semianalytic variety. We determine the dimension of the boundary of any connected component of M$_g/R$. It turns out that every connected component has a nonempty boundary. In particular, no connected component of M$_g/R$is real analytic. We conclude that M$_g/R$ is not a real analytic variety.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.