Kroonenberg and de Leeuw (1980) have developed an alternating least-squares method TUCKALS-3 as a solution for Tucker's three-way principal components model. The present paper offers some additional features of their method. Starting from a reanalysis of Tucker's problem in terms of a rank-constrained regression problem, it is shown that the fitted sum of squares in TUCKALS-3 can be partitioned according to elements of each mode of the three-way data matrix. An upper bound to the total fitted sum of squares is derived. Finally, a special case of TUCKALS-3 is related to the Carroll/Harshman CANDECOMP/PARAFAC model.