When there are multiple competing objectives in a decision-making process, Multi-Attribute Choice scoring models are excellent tools, permitting the incorporation of both subjective and objective attributes. However, their accuracy depends upon the subjective techniques used to construct the attribute scales and their concomitant weights. Conventional techniques using local scales tend to overemphasize small differences in attribute measures, which may yield erroneous conclusions. The Range Sensitivity Principle (RSP) is often invoked to adjust attribute weights when local scales are used. In practice, however, decision makers often do not follow the prescriptions of the Range Sensitivity Principle and under-adjust the weights, resulting in potentially poor decisions. Examples are discussed as is a proposed solution: the use of global scales instead of local scales.