We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this study was to optimise patient dose and image quality of Varian TrueBeam cone beam computed tomography (CBCT) pelvis, thorax and head and neck (H&N) images based on patient size.
Methods:
An elliptical phantom of small, medium and large size was designed representative of a local population of pelvis, thorax and H&N patients. The phantom was used to establish the relationship between image noise, CT and CBCT exposure settings. Using this insight, clinical images were optimised in phases and the image quality graded qualitatively by radiographers. At each phase, the time required to match the images was recorded from the record and verify system.
Results:
Average patient diameter was a suitable metric to categorise patient size. Phantom measurements showed the power relationship between noise and CBCT exposure settings of value −0·15, −0·35 and −0·43 for thorax, pelvis and H&N, respectively. These quantitative phantom measurements provided confidence that phased variation of ~±20% in mAs should result in clinically usable images. Qualitative assessment of almost 2000 images reduced the exposure settings in H&N images by −50%, thorax images by up to −66% and pelvis images by up to −80%. These optimised CBCT settings did not affect the time required to match images.
Findings:
Varian TrueBeam CBCT mAs settings have been optimised for dose and image quality based on patient size for three treatment sites: pelvis, thorax and H&N. Quantitative phantom measurements provided insight into the magnitude of change to implement clinically. The final optimised exposure settings were determined from radiographer qualitative image assessment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.