In this paper we study a stochastic differential game between two insurers whose surplus processes are modelled by quadratic-linear diffusion processes. We consider an exit probability game. One insurer controls its risk process to minimize the probability that the surplus difference reaches a low level (indicating a disadvantaged surplus position of the insurer) before reaching a high level, while the other insurer aims to maximize the probability. We solve the game by finding the value function and the Nash equilibrium strategy in explicit forms.