We find a lower bound on the number of imaginary quadratic extensions of the function field ${{\mathbb{F}}_{q}}\left( T \right)$ whose class groups have an element of a fixed order.
More precisely, let $q\,\ge \,5$ be a power of an odd prime and let $g$ be a fixed positive integer $\ge \,3$. There are $\gg \,{{q}^{\ell \left( \frac{1}{2}+\frac{1}{g} \right)}}$ polynomials $D\,\in \,{{\mathbb{F}}_{q}}\left[ T \right]$ with $\deg \left( D \right)\,\le \,\ell $ such that the class groups of the quadratic extensions ${{\mathbb{F}}_{q}}\left( T,\,\sqrt{D} \right)$ have an element of order $g$.