We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Truth, provability, necessity, and other concepts are fundamental to many branches of philosophy, mathematics, computer science, and linguistics. Their study has led to some of the most celebrated achievements in logic, such as Gödel's incompleteness theorems, Tarski's theorem on the undefinability of truth, and numerous accounts of the paradoxes associated with these concepts. This book provides a clear and direct introduction to the theory of paradoxes and the Gödel incompleteness theorems. It offers new analyses of the ideas of self-reference, circularity, and the semantic paradoxes, and helps readers to see both how paradoxes arise and what their common features are. It will be valuable for students and researchers with a minimal background in logic and will equip them to understand and discuss a wide variety of topics in philosophical logic.
Gödel’s suggestion in his 1946 Princeton Bicentennial Lecture, to extend what he characterises as the formalism independence of the concept of computabilityto definability and provability, are discussed and implenented. The implementation for the concept of definabilitytakes the form of extended constructibility. Possible implementations having to do with provability are also discussed, mainly in connection with informal proof systems involving Gödel’s so-called large cardinal program.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.