Progesterone is essential for maintaining pregnancy, and several authors have suggested that low peripheral concentrations of progesterone may be responsible for high rates of embryonic loss. The primary organ involved in the catabolism of progesterone is the liver, and cytochrome P450 2C and 3A sub-families account for a large proportion of this catabolism. Elucidating a mechanism to decrease progesterone catabolism, thereby increasing embryonic and uterine exposure to progesterone, seems a logical approach to ameliorate high rates of embryonic loss. The objectives of the current experiment were to determine the pattern of insulin secretion after supplementing feed with either sodium acetate or sodium propionate and to determine any association between the differential patterns of insulin secretion with the hepatic activity of cytochrome P450 2C and 3A and progesterone clearance. Sixteen ovariectomized ewes were fed 3 kg/day for 10 days of a diet consisting of 50% corn silage, 38% triticale haylage, 12% soybean meal and 600 ml of 3.5 M sodium acetate (energy control; n = 8) or 2.0 M sodium propionate (gluconeogenic substrate; n = 8). Equal portions of the ration (1 kg as-fed basis along with 200 ml of 3.5 M sodium acetate or 2.0 M sodium propionate) were offered three times daily at 0600, 1400 and 2200 h. Concentrations of insulin in plasma were determined immediately before feeding and at 15, 30, 60, 90, 120, 180, 240 and 300 min after feeding. Progesterone clearance from peripheral circulation (ng/ml per min) was measured by giving a 5 mg injection of progesterone into the left jugular vein and collecting blood via the right jugular vein at 0, 2, 4, 6, 8, 10, 15, 20 and 30 min afterwards. Liver biopsies were taken 1 h after feeding to determine cytochrome P450 2C and 3A activities. Insulin concentrations in ewes supplemented with sodium propionate were elevated at 15, 30 and 60 min after feeding compared to the sodium acetate group. Cytochrome P450 2C and 3A activities were decreased 1 h after feeding in the sodium propionate-treated ewes relative to sodium acetate. Insulin appears to down-regulate cytochrome P450 activity, which could be used to decrease the catabolism of progesterone during early gestation, thereby increasing peripheral concentrations of progesterone and, consequently, embryonic exposure to progesterone.