Development of large-scale quantum computing systems will require radio frequency (RF) and microwave technologies operating reliably at cryogenic temperatures down to tens of milli-Kelvin (mK). The quantum bits in the most promising quantum computing technologies such as the superconducting quantum computing are designed using principles of microwave engineering and operated using microwave signals. The control, readout, and coupling of qubits are implemented using a network of microwave components operating at various temperature stages. To ensure reliable operation of quantum computing systems, it is critical to ensure optimal performance of these microwave components and qubits at their respective operating temperatures, which can be as low as mK temperatures. It is, therefore, critical to understand the microwave characteristics of waveforms, components, circuits, networks, and systems at cryogenic temperatures. The UK’s National Physical Laboratory (NPL) is focussed on developing new microwave measurement capabilities through the UK’s National Quantum Technologies Programme to address various microwave test and measurement challenges in quantum computing. This includes the development of various measurement capabilities to characterize the microwave performance of quantum and microwave devices and substrate materials at cryogenic temperatures. This paper summarizes the roadmap of activities at NPL to address these microwave metrology challenges in quantum computing.