During the eclipse of a planet, spots and other features on the surface of the host star may be occulted. This will cause small variations in the light curve of the star. Detailed studies of these variations during planetary transits provide a wealth of information about the starspots properties such as size, position, temperature (i.e. intensity), and magnetic field. If observation of multiple transits is available, the spots lifetime can be estimated. Moreover it may also be possible to determine the stellar rotation and whether differential rotation is present. Here, the study is performed using a method that simulates the passage of a planet (dark disk) in front of a star with multiple spots of different sizes, intensities, and positions on its surface. The data variations in the light curve of the star are fit using this method, yielding the starspots properties. Results are presented for solar-like stars, such as the active star CoRoT-2a.