In the development of materials for blue recording, the issues for rewritable discs relate to speed and lifetime stability. Both aspects are connected with the properties of the phase-change recording layer. Higher data rates require faster erasure (i.e., recrystallization) of previously written marks. Increasing the Sb concentration or adding specific dopants to the phase-change material appears to accelerate the crystallization rate. Faster erasure rates should, however, not promote spontaneous recrystallization at room temperature, as this would adversely affect the lifetime stability. This roomtemperature stability can be estimated from an activation energy analysis. Excellent lifetime stability proves attainable by a judicious selection of the composition of the phase-change material.
For write-once discs, the choice of the recording material is between a spin-coated dye, a phase-change layer, and an inorganic alloy. While suitable dye materials for blue wavelengths are now being developed, research into the alternative of inorganic bilayers has yielded encouraging results. Thus far, good write-once recording performance has been demonstrated with Cu/Si as the recording medium.The mechanism of mark formation in such a bilayer will be addressed. Promising results obtained with optimized Cu/Si stacks illustrate the attractiveness of this type of write-once material for blue recording.