The title compound, 3-hydroxypropionitrile, was crystallized repeatedly in situ inside a quartz capillary using a liquid nitrogen cryostream. The X-ray powder diffraction patterns obtained indicated the presence of two distinct crystalline phases. The cleanest datasets for each of the phases were used to solve the crystal structures via simulated annealing, followed by refinement and optimization via dispersion-corrected density functional theory (DFT) calculations, with a final Rietveld refinement against the experimental data. The two structures appear to correspond to those proposed in a 1960s literature vibrational spectroscopy paper, one being the more stable with a gauche molecular conformation and the second metastable phase more complex with mixed conformations. Dispersion-corrected DFT computation using lattice parameters for both phases obtained from a single 84 K dataset with co-existing phases shows the stable and metastable phases to differ in energy by less than 0.5 kJ mol−1. A comparison of experimental far infrared spectra published in the 1960s with those calculated from the proposed crystal structures provides some independent supporting evidence for the proposed structures.