Trials were conducted in two experimental runs at the Purdue University Horticulture Greenhouses, West Lafayette, IN, to determine ‘Redefined Murray Mitcham’ peppermint tolerance to tiafenacil. Established peppermint in 20-cm-diameter polyethylene pots was subjected to a simulated harvest by removing aboveground biomass at the substrate surface; then, tiafenacil was applied at 0, 25, 50, 100, and 200 g ai ha−1. Visible crop injury, height, and aboveground dry biomass data were subjected to regression analysis to generate predictive models. At 2 wk after treatment (WAT), peppermint injury increased from 63% to 86% and from 25% to 76% in Experimental Run 1 and 2, respectively, as tiafenacil rate increased from 25 to 200 g ha−1. At 4 WAT, injury increased from 0% to 63% and from 4% to 37% in Experimental Run 1 and 2, respectively, as tiafenacil rate increased from 25 to 200 g ha−1. By 7 WAT (both experimental runs), injury increased from 0% to 17% as tiafenacil rate increased from 25 to 200 g ha−1. At 4 WAT, height decreased from 23.0 to 8.6 cm and from 17.6 to 10.3 cm in Experimental Run 1 and 2, respectively, as tiafenacil rate increased from 0 to 200 g ha−1. At 7 WAT, height decreased from 28.1 to 21.4 cm as tiafenacil rate increased from 0 to 200 g ha−1. Aboveground dry weight of the nontreated check was 20.3 g pot−1 and decreased from 19.3 to 7.0 g pot−1 as tiafenacil rate increased from 25 to 200 g ha−1. Despite acute necrosis, injury from tiafenacil at lower rates was not persistent. The proposed 1X rate of tiafenacil for peppermint, 25 g ha−1, resulted in ≤4% injury 4 and 7 WAT and in only a 3% reduction in plant height and a 4.7% reduction in aboveground dry weight compared to the nontreated check.