Over the last two decades there have been considerable advances in modelling the spectra of massive stars and supernovae (SNe). Despite this progress, there are still numerous uncertainties that affect the accuracy of models. For massive stars, convection, instabilities, clumping, and our inability to model stellar winds self-consistently likely introduce systematic errors into our analyses. For SNe, and particularly for core-collapse SNe, departures from spherical symmetry strongly affect observed spectra and need to be taken into account. There are also issues with clumping, and mixing processes (both in the progenitor and the SN explosion) that need to be resolved. For both massive stars and SNe, the accuracy and availability of atomic data continues to be an ongoing issue influencing analyses.