We deal with the problem of seating an airplane's passengers optimally, namely in the fastest way. Under several simplifying assumptions, whereby the passengers are infinitely thin and react within a constant time to boarding announcements, we are able to rewrite the asymptotic problem as a calculus of variations problem with constraints. This problem is solved in turn using elementary methods. While the optimal policy is not unique, we identify a rigid discrete structure which is common to all solutions. We also compare the (nontrivial) optimal solutions we find with some simple boarding policies, one of which is shown to be near-optimal.