We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To measure and compare the skin doses received by treated left breast and contralateral breast (CB) during whole breast radiotherapy using five treatment techniques in an indigenously prepared wax breast phantom.
Materials and methods:
Computed tomography (CT) images of the breast phantom were used for treatment planning and comparison of skin dose calculated from treatment planning system (TPS) with measured dose. Planning target volume (PTV) and the CB were drawn arbitrarily on the CT images acquired for the breast phantom with 10 numbers of calibrated optically stimulated luminescent dosimeters (OSLDs) fixed on the surface of both breasts. The TPS calculated surface doses of PTV breast and CB for five treatment planning techniques, viz., conventional wedge (CW), irregular surface compensator-based (ISC), field-in-field (FiF), intensity-modulated radiotherapy (IMRT) and rapid arc (RA) techniques were obtained for comparison. The plans were executed in Clinac iX Linear Accelerator with the OSLDs fixed at the same locations on the phantom as in simulation. The TPS calculated mean dose at the surface of the treated left breast and CB was noted for the 10 OSLDs from dose-volume histogram (DVH) and compared with the measured dose. Also, the mean chamber dose at the centre of the left breast was noted from the DVH for comparing with ion chamber measured dose.
Results:
With reference to the results, it is seen that the dose to the CB is lowest in ISC technique and FiF technique and greatest in IMRT technique. The CW technique also delivered a dose comparable to IMRT to the CB of the phantom. The dose to the surface of PTV breast was highest and comparable in CW plans and FiF plans (68% and 67%) and lowest in IMRT and RA plans (50% each).
Findings:
Analysis of the results shows that the FiF and ISC techniques are preferred while planning breast radiotherapy due to the reduced dose to the CB.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.