The ability of montmorillonite to mitigate the toxic effect of heavy oil from the Nakhodka oil spill, by growth of hydrocarbon-degrading bacteria and enable bioremediation was studied. Montmorillonite enhanced the bacterial growth significantly (P < 0.05) in the main treatment containing heavy oil+bacteria+montmorillonite (OBM), because the specific growth rate (μ) was greater than that in the biotic control treatment containing heavy oil+bacteria (OB). Significant amounts of Si and Al (major constituents of montmorillonite) were not released in the aqueous phase over the ∽24-day experiment (P > 0.05). Transmission electron microscopic observation showed that the hydrocarbon-degrading bacterial cells were covered and encrusted with montmorillonite particles. Scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (STEM-EDS) also showed that the surrounding of the bacterial cells was frequently rich in Si but not in Al. Fourier transform infrared (FTIR) spectroscopy indicated that the heavy oil-bacterial cell-montmorillonite particle complex retained the composition of both water and heavy oil. X-ray powder diffractrometery (XRD) analysis revealed that heavy oil and heavy oil-bacteria did not change the basal spacing of montmorillonite over a period of 24 days. The enhancement of hydrocarbon-degrading bacterial growth is attributed to montmorillonite likely serving as both bacterial growth-supporting carrier and protective outer layer against high concentrations of heavy oil that inhibit growth. These results shed light on the interactions in oil-bacteria-clay complexes and could potentially be used in marine oil spill bioremediation.