Cone-beam X-ray microtomography attracts increasing attention due to its applications in biomedical sciences, material engineering, and industrial nondestructive evaluation. Rapid volumetric image reconstruction is highly desirable in all these areas for prompt visualization and analysis of complex structures of interest. In this article, we reformulate a generalized Feldkamp cone-beam image reconstruction algorithm, utilize curved voxels and mapping tables, improve the reconstruction efficiency by an order of magnitude relative to a direct implementation of the standard algorithm, and demonstrate the feasibility with numerical simulation and experiments using a prototype cone-beam X-ray microtomographic system. Our fast algorithm reconstructs a 256-voxel cube from 100 projections within 2 min on an Intel Pentium II® 233 MHz personal computer, produces satisfactory image quality, and can be further accelerated using special hardware and/or parallel processing techniques.