We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the class $\operatorname {Erg}^\perp $ of automorphisms which are disjoint with all ergodic systems. We prove that the identities are the only multipliers of $\operatorname {Erg}^\perp ,$ that is, each automorphism whose every joining with an element of $\operatorname {Erg}^{\perp }$ yields a system which is again an element of $\operatorname {Erg}^{\perp }$, must be an identity. Despite this fact, we show that $\operatorname {Erg}^\perp $ is closed by taking Cartesian products. Finally, we prove that there are non-identity elements in $\operatorname {Erg}^\perp $ whose self-joinings always yield elements in $\operatorname {Erg}^\perp $. This shows that there are non-trivial characteristic classes included in $\operatorname {Erg}^\perp $.
Thermalization in classical systems takes place through the spreading of an intial probability distribution in phase space.Liouville's Theorem implies that the phase space volume occupied by the probability distribution is preserved by Hamiltonian systems.These observations motivate the hypothesis that temporal averages of physical quantities are equivalent to ensemble averages.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.