We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Microcomputers play an increasingly important role in the delivery of radiation therapy. Exposure to neutron irradiation can produce undesirable effects in modern microcomputers. The objective of this study is to measure acute and cumulative effects of neutron exposure of Intel-based microcomputers in photon and proton therapy treatment environments.
Materials and methods:
Multiple computers were irradiated with neutrons produced from MEVION S250 passive scattering proton therapy and from Varian 21EX Linear Accelerator photon therapy systems. The energy of the proton beam was 232 MeV and the photon beam energies were 6 and 18 MV. Rates of fatal errors in computer processing unit (CPU) cores were measured.
Results:
Varying rates of fatal system errors due to upsets in the CPU cores were observed. Post-exposure routine stress testing revealed no permanent hardware defects in the random access memory (RAM) or hard disk drive (HDD) of any tested systems. Microchip manufacturers fit increasingly high numbers of transistors in the same volume and the susceptibility to radiation thus increases.
Conclusions:
This work explores if the process size of a microchip is the dominant factor and also looked at the short- and long-term effects of neutron irradiation on modern microprocessors in a clinical environment. Additionally, methods of effective shielding are proposed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.