X-ray and neutron fiber diffraction has been used to study cellulose as it is converted from its naturally occurring crystal phase, cellulose I, to an activated crystal phase, cellulose IIII, by ammonia treatment. The detailed crystal structures determined for cellulose Iβ, an intermediate ammonia-cellulose I complex, and cellulose IIII, reveal a structural transition pathway: hydrogen bonded sheets of chains in cellulose Iβ slip with respect to each other to accommodate the penetrating ammonia guest molecules in the intermediate complex. On evaporation of ammonia from the intermediate complex, there is a relative small change in chain packing as an inter-sheet ammonia bridge is replaced by an inter-sheet hydrogen bond in cellulose IIII. When cellulose IIII is heated it converts back to cellulose Iβ. Both ammonia-cellulose I and cellulose IIII have extended chains of cooperative hydrogen bonds in relatively open crystal structures that may add to their susceptibility to rapid change.