An ultra-wideband current-reused low-noise amplifier (LNA) monolithic microwave integrated circuit design is presented in this letter. Negative feedback networks are employed at both stages of the proposed LNA to expand bandwidth. Furthermore, source adaptive bias networks is designed in the first stage and combined with a current-reused construction to acquire a compact chip size and maintain low power consumption. Then, the validation of design theory is implemented by employing a 0.15-µm gallium arsenide pseudomorphic high-electron-mobility transistor process. The measured results show that the proposed LNA achieves a small signal gain of 15.5–17.8 dB, a noise figure of 3–3.65 dB, and an output 1 dB compression point (OP1 dB) of 14.5–15.5 dBm from the target bandwidth of 2–18 GHz. In addition, the fabricated LNA consumes 220 mW from a 5 V supply and occupies a chip area of 1.2 × 1.5 mm2.