We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present study reports myeloablative total body irradiation (TBI) on an isocentrically mounted linac by laying the patient on the floor and management of abutting radiation fields and partial shielding of lungs. Dosimetrical efficacy of this novel technique was evaluated.
Materials and methods:
In this retrospective study, dosimetrical parameters from TBI plans on whole-body CT scans of 46 patients were analysed. The prescribed dose to TBI was 12 Gy in six fractions delivered over a period of 3 days for myeloablative conditioning. TrueBeam STx platform Linac (Varian Medical Systems Inc., Palo Alto, CA, USA) was used to deliver opposing fields. Radiation fields were abutted to form a single large field using an arithmetic formula at source-to-skin-distance of 210 cm.
Results:
Discrepancies in dose calculated by treatment planning system were within 1·6% accuracy, and dose profile at the junction of abutting radiation fields was reproduced within 3·0% accuracy. The real treatment time for each patient was ~30 minutes/fraction. Monitor unit was weighted for multiple sub-fields to achieve dose homogeneity within 5·0% throughout the whole body, and the mean dose to lung was ≤10 Gy.
Conclusion:
Our abutting radiation field technique for myeloablative TBI is feasible in any existing linac bunker. ‘Island-blocking’ is feasible in this technique using multi-leaf collimator. This technique is cost-effective as it does not require any costly equipment than the readily available equipment in any radiotherapy facility. In general, TBI requires laborious planning procedures and spacious linac bunkers; this novel technique has the potential to change previously held notions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.