In this paper, we study the existence and concentration behaviour of multi-peak standing waves for a singularly perturbed Davey–Stewartson system, which arises in the theory of shallow water waves. For this purpose, we first give a sharp threshold of the existence of ground-state solutions to the related limiting problem. Next, combining the penalization method and the regularity theory of elliptic equations, we construct a family of positive solutions concentrating around any prescribed finite set of local minima, possibly degenerate, of the potential. A feature of this analysis is that we do not need any uniqueness or non-degeneracy conditions for the limiting equation. To the best of our knowledge, this paper is the first study dealing with the study of concentrating solutions for Davey–Stewartson systems. We emphasize that with respect to the classical Schrödinger equation, the presence of a singular integral operator in the Davey–Stewartson system forces the implementation of new ideas to obtain the existence of multi-peak solutions.