We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Power electronic circuits enable electrified aircraft propulsion (EAP) – from the More-Electric Aircraft (MEA) (an aircraft where the propulsion systems are still traditional, but some or all of the secondary non-propulsion-related subsystems are electrified) to the All-Electric Aircraft (AEA) (an aircraft with fully electrified propulsion and secondary subsystems) – and their importance cannot be understated. This chapter provides general power conversion concepts while fostering a solid high-level understanding of power electronic circuits, focusing on those circuits and devices that are crucial for EAP. Power system metrics, including power density and voltage, and integration techniques are presented. This is followed by a description of relevant converter topologies, including two- and multi-level inverters, direct and indirect matrix converters, rectifiers, circuits for open winding and multi-phase electric machines, and fault-tolerant topologies. A discussion of semiconductor devices and materials, including a brief discussion of silicon-carbide (SiC) devices, concludes the chapter.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.