Habitat prioritization and corridor restoration are important steps for reconnecting fragmented habitats and species populations, and spatial modelling approaches are useful in identifying suitable habitat for elusive tropical rainforest mammals. The Endangered Bornean banteng Bos javanicus lowi, a wild bovid endemic to Borneo, occurs in habitat that is highly fragmented as a result of extensive agricultural expansion. Based on the species’ historical distribution in Sabah (Malaysia), we conducted camera-trap surveys in 14 forest reserves during 2011–2016. To assess suitable habitat for the banteng we used a presence-only maximum entropy (MaxEnt) approach with 11 spatial predictors, including climate, infrastructure, land cover and land use, and topography variables. We performed a least-cost path analysis using Linkage Mapper, to understand the resistance to movement through the landscape. The surveys comprised a total of 44,251 nights of camera trapping. We recorded banteng presence in 11 forest reserves. Key spatial predictors deemed to be important in predicting suitable habitat included soil associations (52.6%), distance to intact and logged forests (11.8%), precipitation in the driest quarter (10.8%), distance to agro-forest and regenerating forest (5.7%), and distance to oil palm plantations (5.1%). Circa 11% of Sabah had suitable habitat (7,719 km2), of which 12.2% was in protected forests, 60.4% was in production forests and 27.4% was in other areas. The least-cost path model predicted 21 linkages and a relatively high movement resistance between core habitats. Our models provide information about key habitat and movement resistance for bantengs through the landscape, which is crucial for constructive conservation strategies and land-use planning.