An Ordovician subvolcanic intrusive complex hosted by Neoproterozoic metasediments crops out at Souter Head about 6km S of Aberdeen, Scotland. The complex is composed mainly of two-mica red granite and breccia with minor dykes of pegmatite, quartz porphyry, felsite and dolerite, and widespread quartz veining, hydrothermal alteration and minor molybdenite mineralisation. Anomalous levels of bismuth (Bi), arsenic (As) and gold (Au) occur in quartz–pyrite veins. The complex has been mapped and the major- and minor-element geochemistry, including rare-earth elements of intrusives and mineralisation, has been determined. These data reveal a complex tectonic, intrusive and hydrothermal history. The intrusives are peraluminous and magnetite-, muscovite- and garnet-bearing. The youngest member, a quartz porphyry, is highly fractionated. There are two stages of hydrothermal activity: the first is linked to the explosive release of volatiles from a granite cupola and breccia formation; and the second, widespread quartz veining. Mo is associated with both stages, and Bi–As–Au anomalies are found in late quartz–pyrite veins. The mineralisation is classified as a granite-related vein-type Mo system. The unique preservation, in the Grampian terrane, of an Ordovician subvolcanic complex may be attributed to pre-Devonian movements on the nearby Dee fault and possibly also the collapse of the magma chamber following the explosive release of volatiles. The combination of large size, poor exposure and abundant multi-stage hydrothermal activity suggests that there is potential for further Mo and possibly Au mineralisation in this complex. Further mineralisation of this style may be present in the NE Grampian terrane.