A practical method to evaluate quantitatively the uniformity of fuel/air mixing is essential for research and development of advanced low-emission combustion systems. Typically, this is characterised by measuring an unmixedness parameter or a uniformity index. An alternative approach, based on the fuel/air equivalence ratio distribution, is proposed and demonstrated in a simple methane/air venturi mixer. This approach has two main advantages: it is correlated with the fuel/air mixture combustion temperature, and the maximum temperature variation caused by fuel/air non-uniformity can be estimated. Because of these, it can be used as a criterion to check fuel/air mixing quality, or as a target for fuel/air mixer design with acceptable maximum temperature variation. For the situations where the fuel/air distribution non-uniqueness issue becomes important for fuel/air mixing check or mixer design, an additional statistical supplementary criterion should also be used.