The hydrothermal reaction of kaolinite in the system Na2O-K2O-MgO-Al2O3-SiO2- H2O-HCl, at near-neutral pH conditions, has been investigated at 200ºC, for times from 12 h to 180 days. X-ray diffraction (XRD) study of the solid products indicates that the phases formed from 15 days’ reaction time are randomly ordered mixed-layer chlorite-smectite, dioctahedral on average, with a chlorite:smectite ratio of ∼1:2. No structural evolution was observed with increasing reaction time. Investigation by transmission electron microscopy revealed, on the contrary, that very thin packets with basal spacing of either 10 Å (smectite) or 14 Å (chlorite) are dominant. In addition, packets with periodicities of 12 –13 Å are also observed. Only rarely, randomly to ordered sequences of 10 and 14 Å are observed in the packets. These observations indicate that the mixture of these phases behaves in XRD as randomly ordered mixed-layer chlorite-smectite. Chemical analysis of the solutions suggests that the neo-formed phases are metastable and would evolve, at longer reaction times, toward ordered mixed-layer chlorite-smectite or to clinochlore.